In this tutorial, we will build a container image to run nanotron training jobs. We will train a 109M parameter model with ~100M wikitext tokens as a proof of concept.

  • Prerequisites.
    This tutorial assumes you are able to access todi via SSH. It is also recommended to follow the previously linked tutorial, as this will build up from it.

  • Setup podman.
    Edit your $HOME/.config/containers/storage.conf according to the following minimal template:
    $HOME/.config/containers/storage.conf
    [storage]
      driver = "overlay"
      runroot = "/dev/shm/$USER/runroot"
      graphroot = "/dev/shm/$USER/root"
    
    [storage.options.overlay]
      mount_program = "/usr/bin/fuse-overlayfs-1.13"
  • Modify the NGC container.
    See previous tutorial for context. For simplicity, we already provide a working nanotron image in /capstor/scratch/cscs/ahernnde/container-image/nanotron/nanotron-v1.0.sqsh. If you want to build the container image from scratch, follow the next instructions. Otherwise, jump straight to the next step.
    Here, we assume we are already in a compute node (run srun --pty bash to get one interactive session). In this case, we will be creating the dockerfile in $SCRATCH/container-image/nanotron/Dockerfile. These are the contents of the dockerfile:
    $SCRATCH/container-image/nanotron/Dockerfile
    FROM nvcr.io/nvidia/pytorch:24.04-py3
    
    # Update flash-attn.
    RUN pip install --upgrade --no-build-isolation flash-attn==2.5.8
    
    # Install the rest of dependencies.
    RUN pip install \
    	datasets \
    	transformers \
    	wandb \
    	dacite \
    	pyyaml \
    	numpy \
    	packaging \
    	safetensors \
    	tqdm


    Then build and import the container.

    cd $SCRATCH/container-image/nanotron
    podman build -t nanotron:v1.0 .
    enroot import -x mount -o nanotron-v1.0.sqsh podman://nanotron:v1.0

    Now exit the interactive session by running exit.

  • Set up an EDF.
    See the previous tutorial for context. In this case, the edf will be at $HOME/.edf/nanotron.toml and will have the following contents:
    $HOME/.edf/nanotron.toml
    image = "/capstor/scratch/cscs/ahernnde/container-image/nanotron/nanotron-v1.0.sqsh"
    mounts = ["/capstor", "/users"]
    workdir = "/users/<username>/" 
    writable = true
     
    [annotations]
    com.hooks.aws_ofi_nccl.enabled = "true"
    com.hooks.aws_ofi_nccl.variant = "cuda12"
     
    [env]
    FI_CXI_DISABLE_HOST_REGISTER = "1"
    FI_MR_CACHE_MONITOR = "userfaultfd"
    NCCL_DEBUG = "INFO"

    Note that, if you built your own container image, you will need to modify the image path.

  • Preparing a training job.
    Now let's download nanotron. In the login node run:
    git clone https://github.com/huggingface/nanotron.git
    cd nanotron

    And with your favorite text editor, create the following nanotron configuration file in $HOME/nanotron/examples/config_tiny_llama_wikitext.yaml:
    $HOME/nanotron/examples/config_tiny_llama_wikitext.yaml
    general:
      benchmark_csv_path: null
      consumed_train_samples: null
      ignore_sanity_checks: true
      project: debug
      run: tiny_llama_%date_%jobid
      seed: 42
      step: null
    model:
      ddp_bucket_cap_mb: 25
      dtype: bfloat16
      init_method:
        std: 0.025
      make_vocab_size_divisible_by: 1
      model_config:
        bos_token_id: 1
        eos_token_id: 2
        hidden_act: silu
        hidden_size: 768
        initializer_range: 0.02
        intermediate_size: 1536
        is_llama_config: true
        max_position_embeddings: 512
        num_attention_heads: 12
        num_hidden_layers: 12
        num_key_value_heads: 12
        pad_token_id: null
        pretraining_tp: 1
        rms_norm_eps: 1.0e-05
        rope_scaling: null
        tie_word_embeddings: true
        use_cache: true
        vocab_size: 50257
    optimizer:
      accumulate_grad_in_fp32: true
      clip_grad: 1.0
      learning_rate_scheduler:
        learning_rate: 0.001
        lr_decay_starting_step: null
        lr_decay_steps: null
        lr_decay_style: cosine
        lr_warmup_steps: 150 # 10% of the total steps
        lr_warmup_style: linear
        min_decay_lr: 0.00001
      optimizer_factory:
        adam_beta1: 0.9
        adam_beta2: 0.95
        adam_eps: 1.0e-08
        name: adamW
        torch_adam_is_fused: true
      weight_decay: 0.01
      zero_stage: 1
    parallelism:
      dp: 2
      expert_parallel_size: 1
      pp: 1
      pp_engine: 1f1b
      tp: 4
      tp_linear_async_communication: true
      tp_mode: reduce_scatter
    data_stages:
      - name: stable training stage
        start_training_step: 1
        data:
          dataset:
            dataset_overwrite_cache: false
            dataset_processing_num_proc_per_process: 32
            hf_dataset_config_name: null
            hf_dataset_or_datasets: wikitext
            hf_dataset_splits: train
            text_column_name: text
            hf_dataset_config_name: wikitext-103-v1
          num_loading_workers: 1
          seed: 42
    lighteval: null
    tokenizer:
      tokenizer_max_length: null
      tokenizer_name_or_path: gpt2
      tokenizer_revision: null
    tokens:
      batch_accumulation_per_replica: 1
      limit_test_batches: 0
      limit_val_batches: 0
      micro_batch_size: 64
      sequence_length: 512
      train_steps: 1500
      val_check_interval: -1
    checkpoints:
      checkpoint_interval: 1500
      checkpoints_path: checkpoints
      checkpoints_path_is_shared_file_system: false
      resume_checkpoint_path: checkpoints
      save_initial_state: false
    profiler: null
    logging:
      iteration_step_info_interval: 1
      log_level: info
      log_level_replica: info

    This configuration file will train, as a proof of concept, a gpt-2-like (109M parameters) llama model with approximately 100M tokens of wikitext with settings `tp=4, dp=2, pp=1` (which means that it requires two nodes to train). This training job will require approximately 10 minutes to run. Now, create a batchfile in $HOME/nanotron/run_tiny_llama.sh with the contents:

    $HOME/nanotron/run_tiny_llama.sh
    #!/bin/bash
    #SBATCH --job-name=nanotron      # create a short name for your job
    #SBATCH --nodes=2                # total number of nodes
    #SBATCH --ntasks-per-node=1      # total number of tasks per node
    #SBATCH --gpus-per-task=4
    #SBATCH --time=1:00:00
    #SBATCH --output=logs/%x_%j.log  # control where the stdout will be
    #SBATCH --error=logs/%x_%j.err   # control where the error messages will be
    
    mkdir -p logs
    
    # Initialization.
    set -x
    cat $0
    export MASTER_PORT=25678
    export MASTER_ADDR=$(hostname)
    export HF_HOME=$SCRATCH/huggingface_home
    export CUDA_DEVICE_MAX_CONNECTIONS=1         # required by nanotron
    # export either WANDB_API_KEY=<api key> or WANDB_MODE=offline
    
    # Run main script.
    srun -ul --environment=nanotron bash -c "
      # Change cwd and run the main training script.
      cd nanotron/
      pip install -e .   # Only required the first time.
    
      TORCHRUN_ARGS=\"
       --node-rank=\${SLURM_PROCID} \
       --master-addr=\${MASTER_ADDR} \
       --master-port=\${MASTER_PORT} \
       --nnodes=\${SLURM_NNODES} \
       --nproc-per-node=\${SLURM_GPUS_PER_TASK} \
      \"
    
      torchrun \${TORCHRUN_ARGS} run_train.py --config-file examples/config_tiny_llama_wikitext.yaml
    "
    A few comments:
    - The parts outside the srun command will be run on the first node of the Slurm allocation for this job. srun commands without further specifiers execute with the settings of the sbatch script (i.e. using all nodes allocated to the job). 
    - If you have a wandb API key and want to synchronize the training run, be sure to set the WANDB_API_KEY variable. Otherwise, set WANDB_MODE=of​f​line instead.
    - Note that we are setting HF_HOME in a directory in scratch. This is done to place the downloaded dataset in scratch, instead of your home directory.
    - The pip install command is only run once in every container (compute node). Note that this will only link the nanotron python package to be able to import it in any script irrespective of the current working directory. Because all dependencies of nanotron are already installed in the Dockerfile, no extra libraries will be installed at this point. If the installation of the package under development creates artefacts on the shared filesystem (such as binaries from compiled C++/CUDA source code), this results in a race condition when run from multiple nodes. Therefore, in this case and also when additional external libraries are to be installed, you should either use venv as shown in previous tutorials, or directly build everything in the Dockerfile.
  • Launch a training job with the new image.
    Run:
    sbatch run_tiny_llama.sh

    You can inspect if your job has been submitted successfully by running squeue --me and looking for your username. Once the run starts, there will be a new file under logs/. You can inspect the status of your run using:
    tail -f logs/<logfile>

    In the end, the checkpoints of the model will be saved in checkpoints/.
  • No labels