LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a variety of force fields and boundary conditions. The current version of LAMMPS is written in C++.

Licensing Terms and Conditions

LAMMPS is a freely-available open-source code, distributed under the terms of the GNU Public License.

ALPS (GH200)

Setup

On Alps, LAMMPS is precompiled and available in a user environment (uenv). LAMMPS has been built with kokkos, and the GPU package separately.

To find which LAMMPS uenv is provided, you can use the following command:

uenv image find lammps
└── uenv image find lammps
uenv/version:tag uarch date id size
lammps/2024:v1      gh200  daint   3483b476b75a1801   3,713    2024-06-03
lammps/2024:v2-rc1  gh200  daint   fc5aafe8f327553c   3,625    2025-02-05

We recommend using lammps/2024:v2-rc1 as it's the latest build. To obtain this image, please run

uenv image pull lammps/2024:v2-rc1

To start the uenv for this specific version of LAMMPS, you can use

uenv start --view kokkos lammps/2024:v2-rc1

You can load the view from the uenv which contains the lmp executable. The executable in both these views support GPUs:

#lammps +kokkos packae
uenv start --view kokkos lammps/2024:v2-rc1
#lammps +gpu package, kokkos disabled
uenv start --view gpu lammps/2024:v2-rc1

A development view is also provided, which contains all libraries and command-line tools necessary to build LAMMPS from source, without including the LAMMPS executable:

#build environment for lammps +kokkos package, without providing lmp executeable
uenv start --view develop-kokkos lammps/2024:v2-rc1
#build environment for lammps +gpu package, without providing lmp executeable
uenv start --view develop-gpu lammps/2024:v2-rc1

How to run LAMMPS+kokkos

To start a job, 2 bash scripts are required:

  • A standard slurm submission script
launch.sh
#!/bin/bash -l
#SBATCH --job-name=<job_name>
#SBATCH --time=01:00:00           # HH:MM:SS
#SBATCH --nodes=2                                                                        
#SBATCH --ntasks-per-node=4      # Number of MPI ranks per node, 1 MPI rank per GPU
#SBATCH --gres=gpu:4 #4 GPUs per node
#SBATCH --account=<account>
#SBATCH --uenv=lammps/2024:v2-rc1:/user-environment
#SBATCH --view=kokkos

export MPICH_GPU_SUPPORT_ENABLED=1
 
ulimit -s unlimited
 
srun ./wrapper.sh lmp -in lj_kokkos.in -k on g 1 -sf kk -pk kokkos gpu/aware on
  • A wrapper for numacontrol which sets up cpu and memory binding
wrapper.sh
#!/bin/bash

export LOCAL_RANK=$SLURM_LOCALID
export GLOBAL_RANK=$SLURM_PROCID
export GPUS=(0 1 2 3)
export NUMA_NODE=$(echo "$LOCAL_RANK % 4" | bc)
export CUDA_VISIBLE_DEVICES=${GPUS[$NUMA_NODE]}

export MPICH_GPU_SUPPORT_ENABLED=1
 
numactl --cpunodebind=$NUMA_NODE --membind=$NUMA_NODE "$@"
  • As well as a LAMMPS input file
lj_kokkos.in
# 3d Lennard-Jones melt
variable        x index 200
variable        y index 200
variable        z index 200
variable        t index 1000

variable        xx equal 1*$x
variable        yy equal 1*$y
variable        zz equal 1*$z

variable        interval equal $t/2

units           lj
atom_style      atomic/kk

lattice         fcc 0.8442
region          box block 0 ${xx} 0 ${yy} 0 ${zz}
create_box      1 box
create_atoms    1 box
mass            1 1.0

velocity        all create 1.44 87287 loop geom

pair_style      lj/cut/kk 2.5
pair_coeff      1 1 1.0 1.0 2.5

neighbor        0.3 bin
neigh_modify    delay 0 every 20 check no

fix             1 all nve

thermo          ${interval}
thermo_style custom step time  temp press pe ke etotal density
run_style       verlet/kk
run             $t

with the above scripts you can run a calculation on 2 nodes, using 8 GPUs with the command sbatch launch.sh. You may need to make the wrapper script executable with chmod +x mps-wrapper.sh. Also ensure to replace <account> with your CSCS account name.

Note that with the above scripts, the output will display that only 1 GPU is being used per node. However, the numacontrol script above configures the submission such that each GPU is assigned to 1 MPI rank. Thus, if you use the scripts above, 8 GPUs are actually being used across 2 nodes.

How to run LAMMPS+gpu

To start a job, 2 bash scripts are required:

  • A standard slurm submission script
launch.sh
#!/bin/bash -l
#SBATCH --job-name=<job_name>
#SBATCH --time=01:00:00           # HH:MM:SS
#SBATCH --nodes=2                                                                        
#SBATCH --ntasks-per-node=32      # Number of MPI ranks per node, >=1 MPI rank per GPU
#SBATCH --gres=gpu:4 #4 GPUs per node
#SBATCH --account=<account>                                                                  
#SBATCH --uenv=lammps/2024:v2-rc1:/user-environment
#SBATCH --view=gpu

export MPICH_GPU_SUPPORT_ENABLED=1
 
ulimit -s unlimited

srun ./mps-wrapper.sh lmp -sf gpu -pk gpu 4 -in lj.in
  • A wrapper to control the CUDA MPS daemon, if you wanted to allow oversubscription of MPI ranks-per-GPU. Unlike the KOKKOS package, this can yield some benefit with the GPU package
mps-wrapper.sh
#!/bin/bash
# Example mps-wrapper.sh usage:
# > srun [srun args] mps-wrapper.sh [cmd] [cmd args]
export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log
# Launch MPS from a single rank per node
if [ $SLURM_LOCALID -eq 0 ]; then
    CUDA_VISIBLE_DEVICES=0,1,2,3 nvidia-cuda-mps-control -d
fi
# Wait for MPS to start
sleep 5
# Run the command
"$@"
# Quit MPS control daemon before exiting
if [ $SLURM_LOCALID -eq 0 ]; then
    echo quit | nvidia-cuda-mps-control
fi
  • As well as a LAMMPS input file
lj.in
# 3d Lennard-Jones melt
variable        x index 200
variable        y index 200
variable        z index 200
variable        t index 1000

variable        xx equal 1*$x
variable        yy equal 1*$y
variable        zz equal 1*$z

variable        interval equal $t/2

units           lj
atom_style      atomic

lattice         fcc 0.8442
region          box block 0 ${xx} 0 ${yy} 0 ${zz}
create_box      1 box
create_atoms    1 box
mass            1 1.0

velocity        all create 1.44 87287 loop geom

pair_style      lj/cut 2.5
pair_coeff      1 1 1.0 1.0 2.5

neighbor        0.3 bin
neigh_modify    delay 0 every 20 check no

fix             1 all nve

thermo          ${interval}
thermo_style custom step time  temp press pe ke etotal density
run_style       verlet
run             $t


Building LAMMPS from source using CMake

If you'd like to rebuild LAMMPS from source to add additional packages or to use your own customized code, you can use the develop views contained within the uenv image to provide you with all the necessary libraries and command-line tools you'll need. For the following, we'd recommend obtaining an interactive node and building inside the tempfs directory.

salloc -N1 -t 60 -A <account>
...
srun --pty bash
...
mkdir /dev/shm/lammps_build; cd /dev/shm/lammps_build

After you've obtained a version of lammps you'd like to build, extract it in the above temporary folder, and create a build directory. Load one of the two following views:

#build environment for lammps +kokkos package, without providing lmp executeable
uenv start --view develop-kokkos lammps/2024:v2-rc1
#build environment for lammps +gpu package, without providing lmp executeable
uenv start --view develop-gpu lammps/2024:v2-rc1

and now you can build your local copy of LAMMPS. For example to build with kokkos and the MOLECULE package enabled:


CC=mpicc CXX=mpic++ cmake \
-DCMAKE_CXX_FLAGS=-DCUDA_PROXY \
-DBUILD_MPI=yes\
-DBUILD_OMP=no \
-DPKG_MOLECULE=yes \
-DPKG_KOKKOS=yes \
-DEXTERNAL_KOKKOS=yes \
-DKokkos_ARCH_NATIVE=yes \
-DKokkos_ARCH_HOPPER90=yes \
-DKokkos_ARCH_PASCAL60=no \
-DKokkos_ENABLE_CUDA=yes \
-DKokkos_ENABLE_OPENMP=yes \
-DCUDPP_OPT=no \
-DCUDA_MPS_SUPPORT=yes \
-DCUDA_ENABLE_MULTIARCH=no \
../cmake  


**NOTE**

If you are downloading LAMMPS from github or their website and intend to use kokkos for acceleration, there is an issue with cray-mpich and kokkos versions <= 4.3. For LAMMPS to work correctly on our system, you need a LAMMPS version which provides kokkos >= 4.4. Alternatively, the cmake variable -DEXTERNAL_KOKKOS=yes should force cmake to use the kokkos version (4.5.01) provided by the uenv, rather than the one contained within the lammps distribution.


Using LAMMPS uenv as upstream Spack instances

if you'd like to extend the existing uenv with additional packages (or your own), you can use the provide LAMMPS uenv to provide all dependencies needed to build your customization. See https://eth-cscs.github.io/alps-uenv/uenv-compilation-spack/ for more information.

First, set up an environment:

uenv start --view develop-gpu lammps/2024:v2-rc1

git clone -b v0.23.0 https://github.com/spack/spack.git
source spack/share/spack/setup-env.sh
export SPACK_SYSTEM_CONFIG_PATH=/user-environment/config/

Then create the path and file $SCRATCH/custom_env/spack.yaml. We'll disable the KOKKOS package (and enable the GPU package via +cuda spec), and add the CG-SPICA package (via the +cg-spica spec) as an example. You can get the full list of options here: https://packages.spack.io/package.html?name=lammps

spack:
  specs:
  - lammps@20240417 ~kokkos +cuda cuda_arch=90 +python +extra-dump +cuda_mps +cg-spica
  packages:
    all:
      prefer:
        - +cuda cuda_arch=90
    mpi:
      require: cray-mpich +cuda
  view: true
  concretizer:
    unify: true

Then concretize and build (note, you will of course be using a different path):

spack -e $SCRATCH/custom_env/ concretize -f
spack -e $SCRATCH/custom_env/ install

During concretization, you'll notice a hash being printed alongside the LAMMPS package name. Take note of this hash. If you now try to load LAMMPS :

# naively try to load  LAMMPS 
# it shows two versions installed (the one in the uenv, and the one we just built)
spack load lammps
==> Error: lammps matches multiple packages.
  Matching packages:
    rd2koe3 lammps@20240207.1%gcc@12.3.0 arch=linux-sles15-neoverse_v2
    zoo2p63 lammps@20240207.1%gcc@12.3.0 arch=linux-sles15-neoverse_v2
  Use a more specific spec (e.g., prepend '/' to the hash).
# use the hash thats listed in the output of the build
# and load using the hash
spack load /zoo2p63
# check the lmp executable:
which lmp
/capstor/scratch/cscs/browning/SD-61924/spack/opt/spack/linux-sles15-neoverse_v2/gcc-12.3.0/lammps-20240417-zoo2p63rzyuleogzn4a2h6yj7u3vhyy2/bin/lmp

You should now see that the CG-SPICA package in the list of installed packages:

> lmp -h
...
Installed packages:

CG-SPICA GPU KSPACE MANYBODY MOLECULE PYTHON RIGID


Scaling

Scaling tests were performed using a simple Lennard-Jones potential on 32M particles. Each GPU is assigned to a single MPI-rank, with GPU-direct enabled.

Single Node Performance

lammps_single_node.png

Multiple Node Performance

lammps_multi_node.png

Further Documentation

LAMMPS Homepage

LAMMPS Online Manual